
nodes 30:=timesteps 600:=

λ
∆time

∆x2
⋅ 0.4=∆x 0.1 cm⋅:=∆time 0.1 sec⋅:=

Note: This term should be less than 0.5 to
ensure stability, less than 0.25 to ensure
convergence, and about 0.166 to minimize
truncation error (similar to a Courant-
Friedrishs-Lewy stability criterion).

2) Input finite difference parameters (time step, node spacing, # nodes, # time steps)...

Thermal diffusivity.λ 4 10 6−×
m2

s
=λ k

ρ Cp⋅
:=

k 2 10 5−⋅ W
m K⋅
⋅:=Cp 5

J
gm K⋅
⋅:=ρ 1

gm

m3
⋅:=

1) Input the physical properties the slab (density, heat capacity, & thermal conductivity)...
Problem Setup

If the time step and nodal spacing is sufficiently small the finite difference solution will approa
analytical solution and we will find the numerical solution to our partial differential equation.

...with i indexing across the node
 and j indexing over time.

δT Tj 1+ Tj−=

δT
∆t

λ
∆ ∆T()
∆x()2

⋅= ∆ ∆T() Ti 1+ Ti−() Ti Ti 1−−()−= Ti 1+ 2 Ti⋅− Ti 1−+=Where...

This partial differential equation can be approximated using finite differences...

Transient conduction of heat in a slab.
t
Td

d
λ

2x
Td

d

2
⋅=

Conduction of heat in a slab is usually described using a parabolic partial differential equation.
Physical Model

This Mathcad document shows how to use an finite difference algorithm to solve an intial value
transient heat transfer problem involving conduction in a slab. In this problem, the temperature
the slab is initially uniform (Initial Condition). The edges are then instantly changed to a const
temperature boundary condition (Dirichlet BC). The finite difference algorithm then calculates
how the temperature profile in the slab changes over time.

Background

Wayne Pafko
11/19/01

Transient 1D Conductive Heat Transfer

SolveFiniteDifference steps() T 0〈 〉 Tinitial←

T i〈 〉 updateTemps T i 1−〈 〉()←

i 1 floor steps()..∈for

T

:=

The "SolveFiniteDifference" function first sets the temperature at each node to be equal to the i
temperature. It then loops over the specified number of time steps and calculates what the
temperature profile will be at each step using the "updateTemps" function. This is stored in a s
array. Each row contains the temperature profile for that time step.

updateTemps T() Temp0 BCleft←

Tempnodes 1− BCright←

Tempi Ti λ
∆time

∆x2
⋅ Ti 1− 2 Ti⋅− Ti 1++()⋅+←

i 1 nodes 2−..∈for

Temp

:=

When you pass a vector containing the temperature at each node to the "updateTemps" function
calculates what the temperature at each node will be at the next time step and returns that vecto
updated temperatures. Note that the temperature at the edges are always just set to equal the le
and right boundary conditions (Dirichlet BC).

5) Solve the problem using a finite difference algorithm.
Problem Solution

BCright 440 K⋅:=BCleft 350K:=

4) Input left & right boundary conditions.

TinitialT 0 1 2 3 4 5 6 7 8
0 300 300 300 300 300 300 300 300 300

K=Tinitiali 300 K⋅:=

3) Input initial conditions for the slab.

i 0 nodes 1−()..:=

Total simulation widthnodes ∆x⋅ 3cm=

Total simulation timetimesteps ∆time⋅ 60 s=

Tanswer SolveFiniteDifference timesteps():=

The "Tanswer" array contains solution. Each row contains a temperature profile for a given tim
step. There are as many rows as time steps and as many columns as nodes (array is only partial
shown, scroll around to see entire solution).

TanswerT

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7
8

300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
350.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0
350.0 320.0 300.0 300.0 300.0 300.0 300.0 300.0
350.0 324.0 308.0 300.0 300.0 300.0 300.0 300.0
350.0 328.0 311.2 303.2 300.0 300.0 300.0 300.0
350.0 330.1 314.7 305.1 301.3 300.0 300.0 300.0
350.0 331.9 317.0 307.4 302.3 300.5 300.0 300.0
350.0 333.2 319.1 309.2 303.6 301.0 300.2 300.0
350.0 334.3 320.8 311.0 304.8 301.7 300.5 300.1

K=

The last row contains the temperature profile at the end of the simulation. This may or may no
the steady-state solution depending on how much simulation time elapses.

Tanswer timesteps 1−〈 〉T 0 1 2 3 4 5 6
0 350.0 352.3 354.6 357.0 359.4 361.8 364.2

K=

6) View the results

xi i ∆x⋅:= Position of each node in slab

0 1 2 3

300

350

400

450

Position in Slab (cm)

Te
m

pe
ra

tu
re

 (K
)

We can also animate the results...

time 10 FRAME⋅ ∆time⋅:= Calculate time at each FRAME

timesteps
10

60= Animate FRAME up to this number.

0 1 2 3
300

350

400

450

Position in Slab (cm)

Te
m

pe
ra

tu
re

 (K
)

time 0s=

